If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2x-128=0
a = 6; b = 2; c = -128;
Δ = b2-4ac
Δ = 22-4·6·(-128)
Δ = 3076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3076}=\sqrt{4*769}=\sqrt{4}*\sqrt{769}=2\sqrt{769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{769}}{2*6}=\frac{-2-2\sqrt{769}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{769}}{2*6}=\frac{-2+2\sqrt{769}}{12} $
| 4(4m-3)-(m-5)=-52m= | | 7x-3=+7x | | 11c-2c-5c=12 | | 5x-2=x-9 | | –3m−5=–2m | | 7x−4=7x+8 | | –6+8z=7z | | -4x+2=3(6+4x) | | -2/5x+30=4/5x | | X/10x-1=5x+6 | | 22x+6=7x+1 | | 5(x+8)-5(x+4)=2-x+4-6x | | 4 5×q=1 | | 5(2x-4)+x+1=-10x-(x-3) | | 45x+16=45x+32 | | 15+6.2n=13+6.4n | | 50/20=5/h;h | | −9=2+5/6b | | 4x+2=3(6+4x) | | 0=2(z+-3) | | 3(y-4)-2=-3(-9y+2)-8y | | 2/5(a+20)=4 | | 4(x+1.2)=x+2.5x2x+4.5 | | 4x+107=180 | | 12x-3(x-2)=4x-19 | | 6z-10z+20z+-2z=14 | | 4−8t=–7t | | -2p+4=27-4p | | 2x-34=35 | | 7r+7=20.3 | | -110=-5(1-7x) | | 4(1-x)=-4(x+1) |